Загрузка...
скачать
Реферат на тему:

Кеплеровы элементы орбиты



План:

    Введение
  • 1 Большая полуось
  • 2 Эксцентриситет
  • 3 Наклонение
  • 4 Аргумент перицентра
  • 5 Долгота восходящего узла
  • 6 Средняя аномалия
  • 7 Вычисление кеплеровых элементов
  • Примечания

Введение

Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1)
Части эллипса (рис.2)

Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:

  • большая полуось (a\,\!),
  • эксцентриситет (e\,\!),
  • наклонение (i\,\!),
  • аргумент перицентра (\omega\,\!),
  • долгота восходящего узла (\Omega\,\!),
  • средняя аномалия (M_o\,\!).

Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию по отношению к базовой системе координат, шестой — положение тела на орбите.


1. Большая полуось

Большая полуось — это половина главной оси эллипса | AB | (обозначена на рис.2 как a). В астрономии характеризует среднее расстояние небесного тела от фокуса

2. Эксцентриситет

Эксцентрисите́т (обозначается «e» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.[1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле:

\varepsilon = \sqrt{1 - \frac{b^2}{a^2}}, где b — малая полуось (см. рис.2)

Можно разделить внешний вид орбиты на пять групп:

  • \varepsilon = 0 — окружность
  • 0 < \varepsilon < 1 — эллипс
  • \varepsilon = 1 — парабола
  • 1 < \varepsilon < \infty — гипербола
  •  \varepsilon = \infty — прямая (вырожденный случай)

3. Наклонение

A — Объект
B — Центральный объект
C — Плоскость отсчёта
D — Плоскость орбиты
i — Наклонение

Наклонение орбиты (накло́н орбиты, накло́нность орбиты, наклоне́ние) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).

Обычно обозначается буквой i (от англ. inclination). Наклонение измеряется в угловых градусах, минутах и секундах.

Если 0 < i < 90°, то движение небесного тела называется прямым[2].
Если 90° < i < 180°, то движение небесного тела называется обратным.
  • В применении к Солнечной системе, за плоскость отсчёта обычно выбирают плоскость орбиты Земли (плоскость эклиптики). Орбиты других планет Солнечной системы и Луны отклоняются от орбиты Земли лишь на несколько градусов.
  • Для искусственных спутников Земли за плоскость отсчёта обычно выбирают плоскость экватора Земли.
  • Для спутников других планет Солнечной системы за плоскость отсчёта обычно выбирают плоскость экватора соответствующей планеты.
  • Для экзопланет и двойных звёзд за плоскость отсчёта принимают картинную плоскость.

4. Аргумент перицентра

Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.

При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.

Обозначается (\omega\,\!).


5. Долгота восходящего узла

Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемых для математического описания формы орбиты и её ориентации в пространстве. Определяет точку, в которой орбита пересекает основную плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, основная плоскость — эклиптика, а нулевая точка — Первая точка Овна (точка весеннего равноденствия).

Обозначается ☊ или Ω.


6. Средняя аномалия

Аномалии (рис.3)

Средняя аномалия для тела, движущегося по невозмущённой орбите — произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.

Обозначается буквой M (от англ. mean anomaly)

В звёздной динамике средняя аномалия M\,\! вычисляется по следующим формулам:

M = M_0 + n(t-t_0)\,\!

где:

  • M_0\,\! — средняя аномалия на эпоху t_0\,\!,
  • t_0\,\! — начальная эпоха,
  • t\,\! — эпоха, на которую производятся вычисления, и
  • n\,\! — среднее движение.

Либо через уравнение Кеплера:

M=E - e \cdot \sin E\,\!

где:

  • E\,\! — это эксцентрическая аномалия (E на рис.3),
  • e\,\! — это эксцентриситет.

7. Вычисление кеплеровых элементов

Рассмотрим следующую задачу: пусть имеется невозмущённое движение и известны вектор положения \mathbf r_0(x_0,y_0,z_0) и вектор скорости \mathbf \dot r(\dot x_0, \dot y_0, \dot z_0) на момент времени t. Найдём кеплеровы элементы орбиты.

Прежде всего, вычислим большую полуось:

r^2_0 = x^2_0 + y^2_0 + z^2_0
\dot r^2_0 = \dot x^2_0 + \dot y^2_0 + \dot z^2_0
r_0 \cdot \dot r_0 = x_0 \cdot \dot x_0  +  y_0 \cdot \dot y_0 +  z_0 \cdot \dot z_0

По интегралу энергии:

(1) \frac {1}{a} = \frac {2}{r_0} - \frac {v^2_0}{k^2}, где k — гравитационный параметр равный произведению гравитационной постоянной на массу небесного тела, для Земли K = 3,986005×105 км³/c², для Солнца K = 1,32712438×1011 км³/c².

Следовательно, по формуле (1) находим a.


Примечания

  1. А. В. Акопян, А. А. Заславский Геометрические свойства кривых второго порядка, - math.ru/lib/452 — М.: МЦНМО, 2007. — 136 с.
  2. То есть, объект движется вокруг Солнца в том же направлении, что и Земля
скачать

Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 09.07.11 23:43:40

Похожие рефераты: Прецессия перигелия Меркурия, Аномальная прецессия перигелия Меркурия, Аргумент, Аргумент минимизации, Аргумент лосося, Аргумент максимизации, Аргумент (логика), Аргумент железа, Аргумент функции.

Категории: Небесная механика, Орбиты, Системы небесных координат.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike.